
T
he testing of Web-based
applications has much in
common with the testing
of desktop systems: You
need to test the usual func-
tionality, configuration,

and compatibility, as well as perform-
ing all the standard test types. But
Web application testing is more diffi-
cult because complexities are multi-
plied by all the distributed system
components that interact with the ap-
plication. When we see an error in a
Web environment, it’s often difficult
to pinpoint where the error occurs,
and, because the behavior we see or
the error message we receive may be
the result of errors happening on dif-
ferent parts of the Web system, the er-
ror may be difficult to reproduce. So
how do we analyze errors within a
Web-based system, and what consid-
erations should be made for reproduc-
ing such errors?

When we have an understanding
of the underlying technology, we are
better able to maximize testing effi-
ciencies—writing more reproducible
bug reports and finding more errors
in less time. This is easier said than

done…especially in Web environ-
ments. Web environments are dense
with error-prone technology vari-
ables. Here are five fundamental con-
siderations of Web-application test-
ing:

1. When we see an error on the
client side, we are seeing the
symptom of an error—not the er-
ror itself.

2. Errors may be environment-de-
pendent and may not appear in
different environments.

3. Errors may be in the code or in
the configuration.

4. Errors may reside in any of sever-
al layers.

5. Examining the two classes of op-
erating environments—static
versus dynamic—demands dif-
ferent approaches.

Now let’s take a look at each of these
five considerations in more detail:

What are we really
seeing–an error
or a symptom?

Without diagnosing the environment,
we can’t be certain what causes a
symptom to appear. If one of the en-
vironment-specific variables from ei-
ther the client side or the server side
is removed or altered, we might not
be able to reproduce the problem.

Here is an example. I’m testing a
Web-based defect tracking applica-
tion, and going through the process
of creating a new bug report. When I
select the NEW button, I receive an
error message:

Microsoft OLE DB Provider for ODBC
Drivers error '80040e14'

After spending some time investigat-
ing my browser environment, I dis-
cover that JavaScript is disabled in

1

May/June 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
23

TestingTesting

Testing
Web-based
Applications

Analyzing and reproducing errors in a Web environment

by Hung Q. Nguyen

QUICK LOOK

■ Why errors in Web-based
applications are hard to reproduce

■ Analyzing these errors in a way
that saves testing time

the browser preferences dialog box.
Enabling JavaScript eliminates the
error. (Whether or not this is a bug is
not part of this discussion.) The idea
here is that if I add additional infor-
mation regarding the JavaScript set-
ting to the bug report, I can save our
team some time in analyzing this
problem. Furthermore, “disabling
JavaScript” is added to my test suite
from this point on; it will be applied
to all areas of the application so that
all potentially related errors can be
uncovered.

Is the error
environment-
dependent?

To reproduce an environment-de-
pendent error we have to perfectly
replicate both the exact sequence of
activities and the environment con-
ditions (operating system, browser
version, add-on components, data-
base server, Web server, third-party
components, server/client re-
sources, network bandwidth and
traffic, etc.) in which the application
operates. For example, when you try
to log into your Web application
while using a 28.8 kbps dial-up con-
nection, you experience login fail-
ures due to timeout in the authenti-
cation process—but the same login
steps will authenticate successfully
if you are on a T-1 connection at
1.54 mbps. In this case, you have
an environment-dependent error
where the dependency is in the
bandwidth.

Environment-independent er-
rors, on the other hand, are relatively
easier to reproduce—it’s not neces-
sary to replicate the operating envi-
ronment. With environment-inde-
pendent errors, all that need be
replicated is the steps that reveal the
error. For example, if the company
name is misspelled on all of the prod-
uct’s online pages as WebTessting.
Con, you will always see this error—
independent of the hardware, soft-
ware, and resource variables in your

operating environment. More com-
monly, we refer to environment-in-
dependent errors as functionality-
specific errors.

Is it a coding error
or a configuration

problem?
Errors (or the symptoms of sup-

posed errors) may be resolved with
code fixes (assuming the errors are
in fact real) or system reconfigura-
tion (client, server, or network).
Don’t jump too quickly to the conclu-
sion that it’s a bug!

Microsoft OLE DB Provider for ODBC
Drivers error '80004005'

Here is an example illustrating the
challenge of identifying possible
configuration problems as opposed
to actual software errors. It shows
an error message caused by a
“failed login” that has been generat-

ed by a Web application. By simply
looking at this error message, it is
impossible to determine whether
this error is the result of a software
bug, a server-side configuration is-
sue, a compatibility issue, a browser
configuration issue, or all of the
above.

After further analyzing the fail-
ure, I discover several possible con-
ditions that might generate this error
message:

IIS (Web server) virtual directory has not
been set up properly When the virtual
directory is not properly configured,
the requested files, scripts, or data
will not be found. Typically, this is a

server configuration issue. However,
if the installation program failed to
programmatically configure the Web
server according to specification,
then this is a software error. If a
system administrator fails to proper-
ly configure the Web server accord-
ing to specification, this then be-
comes a user error.

Application directory has not been con-
figured properly to execute scripts A
typical application-server directory
contains scripts to be executed when
they are called by a Web server on
the behalf of a client. For security
reasons, a Web server can be config-

ured to allow or disallow scripts to
be executed within certain directo-
ries. If your application-server direc-
tory is designed to contain scripts
that will be executed—but the Web
server is configured to disable script
execution in that directory—the ap-
plication will not work. Is this a soft-
ware error or a configuration
problem?

Default Web page has not been set up
properly The issue is similar to the
problem above.

SQL Server is not running The appli-
cation server needs to connect to the
backend database living on the SQL
server in order to execute queries,
store procedures, and access data. If
the SQL server process itself is not
running, then obviously the applica-
tion will not work.

DLL/COM objects are missing or were
unsuccessfully registered Perhaps the
installation program failed to copy
all the DLLs used by the application
server during setup. If any DLL need-
ed by the application server is miss-
ing, the application will not work.

Perhaps the installation program
correctly copied all the needed mod-
ules, but failed to register one or

3

2

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing May/June 2000
24

To reproduce an environment-dependent error

we have to perfectly replicate both the exact sequence

of activities and the environment conditions.

C
R

E
D

IT
 C

R
E

D
IT

 C
R

E
D

IT

E
D

IT
 P

A
S

S
 0

5/
21

/9
9

May/June 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
25

more of them. For example, with OLE-
based objects such as COM or DCOM,
their class ID (CLSID) must be regis-
tered in the Registry Database before
they can be used. If an application
tries to access a COM object that was
not registered successfully, the appli-
cation will not work.

This problem is often caused by
errors in the installation procedures.
If, on the other hand, the compo-
nents must be manually registered
then this becomes a configuration
issue.

Browser-side JavaScript setting has
been disabled This is a browser-side
configuration problem since the ap-
plication requires the browser to
have JavaScript enabled. Is this a
software error, a configuration prob-
lem, or a technical support issue?

Which layer
really causes
the problem?

Errors in Web systems are often dif-
ficult to consistently reproduce be-
cause of the many variables intro-
duced by the distributed nature of
client/server architecture (i.e., serv-
er, client, and networking compo-
nents). There are at least three usu-
al suspects in a Web environment:
The client, the server, and the net-
work.

Both the client and the server
carry configuration and compatibili-

ty issues that are similar to PC envi-
ronments, where all components are
in one box. Issues multiply within
client/server systems, however, be-
cause there may be many clients and
servers connected on a network.
Typical client/server configuration
and compatibility issues involve the
hardware and operating system mix
(UNIX-based boxes versus Windows-
based boxes, for example) and the
software mix on the server side (Web
server packages, database server
packages, firewalls, COM objects,
CORBA objects, etc.). Issues may also
involve the software mix on the
client side (TCP/IP stacks, dialer
software, helper components, brows-
er brands, and browser versions).
Additionally, browser settings, such
as general settings, connection set-
tings, security settings (including Ac-

4

■ Check if the client operating system, versions, and patches
meet system requirements

■ Check if the correct version of the browser is installed on
the client machine

■ Check if the browser is properly installed on the machine
(for example, the JVM is also successfully installed)

■ Check the browser settings

■ Try the same set of steps with different browsers (e.g.,
Netscape Navigator versus Internet Explorer)

■ Try the same set of steps with different supported versions
of the same browsers (e.g., 3.1, 3.2, 4.2, 4.3, etc.)

■ Check to ensure that all servers are running

■ Check to ensure that all service-based components have
been started

■ Check to ensure that application access privileges are
properly set up

■ Check for missing components on the server (DLLs,
scripts, etc.)

■ Check for proper registration of components (COMs,
Java, etc.)

■ Check to ensure that DNS is properly configured

■ Check if firewall configuration is causing packets to drop
or blocking access

■ Check if a slow connection is causing the application to
time-out

■ Check for potential race or time-related conditions

■ Check for potential network inaccessibility issues on the
client machines

■ Check for potential network inaccessibility issues on the
server machines

■ Check if the server operating system version and patches
meet system requirements

■ Check if the proper versions of the server software such
as Web server, SQL database, and other middle-ware
packages are installed

■ Check server configurations for proper settings

Making Your

Web Application Test Report

More Reproducible

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing May/June 2000
26

tiveX controls, plug-ins, Java, script-
ing, downloads, user authentication,
etc.), content settings, program set-
tings, and other advanced settings
(including browsing options, multi-
media options, Java VM options,
printing options, and HTTP options)
introduce a multitude of variables
that should be tested and included in
analyses.

The network offers another set
of variables. The network affects the
Web application in several ways, in-
cluding timing-related issues (race
conditions, performance, time-outs,
etc.) due to bandwidth and latency,
potential configuration and compati-
bility issues due to hardware devices
such as gateways and routers, and
side effects related to security imple-
mentations.

Static and
dynamic operating

environments
are different.

In general, there are two classes of
operating environments—each with
its own unique testing implications:

Static Environments (i.e., configura-
tion and compatibility errors) in
which incompatibility issues may ex-
ist regardless of variable conditions
such as processing speed and avail-
able memory.

Dynamic Environments (i.e., resource
and time-related errors) in which
otherwise compatible components
may exhibit errors due to memory-
related errors and latency condi-
tions. (We’ll discuss dynamic envi-
ronments in more detail later in this
section.)

Static Operating
Environment: Configuration
and Compatibility Variables
Configuration and compatibility issues
may occur at any point within a Web
system: client, server, or network.
Configuration issues involve various
server software and hardware set-ups,
browser settings, network connec-
tions, and TCP/IP stack set-ups. The
browser setting/JavaScript example
discussed earlier illustrated one type
of configuration issue. A different type
of configuration issue is shown in Fig-
ures 1 and 2, with two possible physi-
cal server configurations: one-box and
two-box configurations.

Our sample application under
test has some charting capabilities
that enable a user to generate met-
rics reports, such as bar charts and
line charts. When a user requests a
metrics report, the application server
pseudo code runs as follows:

1. Connect to the database server
and run the query.

2. Write the query result to a file
named c:\temp\chart.val

3. Execute the Chart JavaApplet.
Read from c:\temp\chart.val and
use the data to draw a graph.

4. Send the JavaApplet to the
browser.

During testing for this application, I
discovered that the charting feature
worked on one of the above configu-
rations, but not the other. After I in-
vestigated further, I learned that the
problem only occurred in the two-
box configuration. After examining
the code, I realized that the problem
is in steps 2 and 3. In step 2, the
query result is written to
c:\temp\chart.val of the database serv-
er local drive. In step 3, the Chart
JavaApplet is running on the applica-
tion server that is not in the same

5

Database
Server

Client Client
Physical Server

Web
Server

Application
Server

Ethernet

FIGURE 1 Web server, application server, and database server in one box

Client Client
Physical Server 1

Ethernet

Physical Server 2

Web
Server

Application
Server

Database
Server

FIGURE 2 Web server and application server in one box; database server in
another box

A
N

N
IE

 B
IS

S
E

T
T

May/June 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
27

box with the database server. When
it attempts to open the file
c:\temp\chart.val on the application
server local drive, the file is not
there.

In this case, I am not suggesting
that we read the code every time we
come across an error; I leave the de-
bugging work for the developers. I
merely want to point out that it is es-
sential to identify which server con-
figurations are problematic, and in-
clude such information in bug
reports. I would also run a cursory
suite of test cases on all distributed
configurations that are supported by
the application server under test.

Compatibility issues are also
important in static operating envi-
ronments. As an example, in Figure 3
we see a compatibility difference be-
tween Netscape Navigator and Inter-
net Explorer.

This is not to say that Internet
Explorer is better than Netscape
Navigator; it simply means that there
are incompatibility issues between
browsers—and that the code should
not assume that relative paths work
for all browsers. More importantly, it
suggests that when you experience
an error in one environment, the
same error may not appear in a dif-
ferent environment if it’s an environ-
ment-dependent error.

Dynamic Operating
Environment: Things
Don’t Stay the Same
When the value of a specific environ-
ment attribute does not stay constant

each time a test procedure is execut-
ed, it causes the operating environ-
ment to become dynamic. The
attribute can be anything from re-
source-specific (available RAM, disk
space, etc.) to timing-specific (net-
work latency, the order of user trans-
actions being submitted, etc.).

When a test case depends on
the exact replication of both the set
of steps and the operating envi-
ronment but the operating environ-

ment cannot be replicated (due to
its dynamic nature), the error be-
comes irreproducible or hard-to-re-
produce.

By the way, this is the reason
that memory-related errors are often
hard to reproduce. When a memory-
overwrite error exists in the code,
for example, it will always cause a
memory-overwritten problem. How-
ever, from a black-box testing per-
spective, we will never have a chance
to see the symptom of this error until
the specific overwritten byte(s) of
code or data is executed or read. In
this example, the set of steps repre-
sents the exact set of black-box ac-
tivities. The memory-overwrite error
represents the actual error in the
code. The condition in which the
overwritten byte is executed or read
represents the dynamic operating en-
vironment or condition needed to re-
veal (reproduce) the error.

Here is a Web application exam-
ple of a dynamic environment-related
error in which we will examine a
time-related error. The specification
requires that:

■ Project names within the system must be
unique

FIGURE 3 Compatibility issue between browsers

The home directory path for the Web server on the host myserver is mapped to:
C:\INETPUB\WWWROOT\

When a page is requested from http://myserver/ data will be pulled from:
C:\INETPUB\WWWROOT\

A filename (mychart.jar) is stored at C:\INETPUB\WWWROOT\MYAPP\BIN.

The application session path (relative path) is pointing to
C:\INETPUB\WWWROOT\MYAPP\BIN, and a file is requested from .\LIB.

If I use Internet Explorer version 3.x, the Web server looks for the file in
C:\INETPUB\WWWROOT\MYAPP\BIN\LIB because the browser relies on the relative
paths. This is the intended behavior and the file will be found; this tells me that my
application will work as expected using Internet Explorer 3.x.

If instead I use Netscape Navigator version 3.x (a browser that doesn’t like .\), the Web
server defaults to C:\INETPUB\WWWROOT\LIB and tries to look for mychart.jar from
there instead. This is a problem for this particular application because the file
(mychart.jar) will not be found there—so I know this feature will not work using Netscape
3.x.

When I brought up the Java Console, I saw the following, which confirmed my finding:
#Unable to load archive
http://myserver/lib/mychart.jar:java.io.IOException:<null>

I am not suggesting that we read the code

every time we come across an error. . . I merely

want to point out that it is essential to

identify which server configurations are problematic,

and include such information in bug reports.

I would also run a cursory suite of test cases

on all distributed configurations that are supported

by the application server under test.

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing May/June 2000
28

■ Error detection and handling for potential
duplication be performed on the client-
side using JavaScript

■ Users will be able to add or delete project
names by requesting the Setting Up Proj-
ects page

■ When a user creates a new project name,
a browser-side JavaScript checks the in-
put name against the select list embed-
ded in the HTML page (as illustrated in
Figure 4)

Take a look at the time-related error
illustrated in Figure 5. These before
and after screenshots of the Setting
Up Projects page illustrate that the
application failed to detect the dupli-
cate name “Doomed.” Figure 4 walks
you through the explanation of this
time-related error that involves two
users adding new project names to
the same database.

As illustrated in Table 1, User A
and User B create new projects si-
multaneously, but without knowl-
edge of each other’s actions. In step
3, User A adds a project named An-
other. Since that project name
already exists, his browser’s
JavaScript displays a message
prompting him for a different proj-
ect name.

User B adds a project named
Doomed. Her browser’s JavaScript
does not detect Doomed as a preexist-
ing project name and so adds it to
both the database and the returned
list. The updated project name list is
sent back to User B.

User A subsequently adds the
same name, Doomed, to the project
list. His browser’s JavaScript does
not detect the name on the HTML list,
so it adds the name Doomed to the
database again—as well as to the re-
turned list. The updated project
name list is sent back to User A with
two Doomed entries included.

This result fails to meet the
product’s specification. Unless this
situation happens to be a well-de-
signed test case, accidentally discov-
ering this error and attempting to re-
produce it is not a simple task. In
this example, the actual error is in
the failure of the application to
check for server-side duplicate
names (in addition to client-side
checking). The steps include User A’s

...
<td width="80" bgcolor=#00CCCC> </td>
<td width="80" bgcolor=#00CCCC align="left" height="9">

Project:

<select name="namelist" size="9" OnChange="ListSelected()">

<option value="Another">Another</option>
<option value="NewProj">NewProj</option>

</select></td>
<td width="100" bgcolor=#00CCCC> </td>
...

FIGURE 4 Browser-side JavaScript checks the input name against the values in
the namelist

FIGURE 5 TOP: Before the project name “Doomed” has been entered by the user;
BOTTOM: After the application failed to detect the duplicate project named “Doomed”

B
E

F
O

R
E

A
F

T
E

R

May/June 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
29

activities. The dynamic operating en-
vironment is created by User B’s ac-
tivities—which are hidden or un-
known to User A.

In Conclusion
To be effective in analyzing and re-
producing errors in a Web environ-
ment, you need to have a command
over the operating environment. You
also need to understand how envi-
ronment-specific variables may af-

fect your ability to replicate errors.
With the application of some of the
skills covered in this article, I hope
that your Web testing experience will
be less frustrating and more enjoy-
able.

Remember that nothing will re-
place your testing skills—your ability
to come up with good test cases, ask
relevant what-if questions, keep
careful notes, and methodically in-
vestigate hard-to-reproduce errors. It
is these skills that will assist you in
finding not only the errors that you

are investigating, but also the undis-
covered errors that are related to
them. STQE

Hung Q. Nguyen (hungn@logigear.
com) is the president and CEO of
LogiGear Corporation, a full-ser-
vice consulting firm offering out-
sourced testing, QA training, and
TRACKGEAR™ (a Web-based de-
fect tracking solution). He is co-au-
thor of Testing Computer Software
and author of the soon-to-be-pub-
lished Testing Web Applications.

S T E P R E Q U E S T H T M L L I S T B E F O R E H T M L L I S T A F T E R D ATA B A S E B E F O R E D ATA B A S E A F T E R

1 USER A gets the Another Another Another
Setting Up Project NewProj NewProj NewProj
Page

2 USER B gets the Another Another Another
Setting Up Project NewProj NewProj NewProj
Page

3 USER A adds a Another Another Another Another
new project named NewProj NewProj NewProj NewProj
"Another"

4 USER B adds a Another Another Another Another
new project named NewProj NewProj NewProj NewProj
"Doomed" Doomed Doomed

5 USER A adds a Another Another Another Another
new project named NewProj NewProj NewProj NewProj
"Doomed" Doomed Doomed Doomed

Doomed Doomed

TABLE 1 User A and User B activities

