To begin with, we should understand the difference between the two document types. Software Requirements Specification describes the system's functional as well as non-functional requirements (e.g. performance requirements, security requirements, availability requirements etc.). On the other hand Functional Requirements Specification (FS) deals with the functional requirements only.
 
In a particular project, the following four possibilities exist.
 
1) Both SRS and FS are available
 
In this case, you should find out which document is the latest one. As mentioned above, you may understand the non-functional requirements from the SRS and in case the FS is the latest document, the functional requirements from there. Be warned that sometimes even non-functional requirements are documented in the FS. The structure of the available SRS and FS should be able to guide you in your study.
 
2) Only SRS is available
 
There is no confusion in this case. You may understand all the software requirements from this document.
 
3) Only FS is available
 
You may understand the functional requirements from this document. However, you should find out about the non-functional requirements from the business analyst/ project manager/ customer support etc.
 
4) None of these documents is available
 
This can happen when the project has been running for a long time. Either the SRS or FS documents will not be available or they will be quite out-of-date and therefore, unusable.
In such a case, you should find out the availability of any other documents/ material e.g. high-level business requirements, existing help files/ user manuals, existing test cases, user stories, customer issues and resolutions etc. In addition, it becomes important to discuss the requirements with various project roles that may be present e.g. system analyst, business analyst, product management, development, support etc. so that you may get your queries resolved. If you notice any discrepancies, you should point it out to the concerned roles and note their resolution.
 
On top of SRS/ FS, the Test Engineer should refer Change Requests (mainly enhancements/ modifications to the software) and the resolution of customer issues.
 
By following the above guidelines, the Test Engineer can understand the requirements and subsequently perform testing.
 
Note: It will be useful to find out about the project stakeholders and project roles before attempting to understand the requirements. This is important because, depending on project characteristics, some project organizations are unusual. Your manager and team members should be able to help you with this.
 

How to estimate testing efforts (6 approaches to get test effort estimate)?


Test effort estimation is a skill required of a Test Lead or a Test Manager. However, test effort estimation is not a skill that one can learn quickly. It requires understanding of several key concepts and practice. In this post, I will explain what test effort estimation is, point you to your existing knowledge of estimation and provide you the key concepts that you can use in your estimation.

First of all, we should understand what we mean by software test effort estimation. Test effort estimation is answering two basic questions about testing:
I. What will be done?
II. How much effort would it take?

There are other questions e.g. I. Who will do what? II. When will they do it? III. How will they do it? but these questions are not related to effort estimation but to planning and scheduling.

Even if you have not estimated test effort before (having relied on the effort estimates given by the client or your project manager), keep in mind that you do effort estimation on a regular basis. Let me explain. Do you recognize the following situations?

1. You are appearing in an examination. The duration of the examination is 3 hours and you have to answer n questions. You average the time available for answering one question while leaving out certain time for revision at the end. You look at the questions. Some questions are easy for you but some are not. You reserve less time than average for answering the simple questions and more time than average for the difficult ones.

2. You have to attend a job interview. The interview is at 10 a.m. You estimate the time it would take you to reach the interview venue, say 1 hour. You add some time e.g. 30 minutes for delays like traffic snarls. You estimate some time, say 30 minutes for collecting your documents and some time, say 30 minutes for dressing up. This means that you would need to wake up no later than 7:30 a.m. that morning to reach your interview venue in time.

3. It is the beginning of another day at work. Your manager has given you 20 test cases to execute today. In addition, you need to complete the annual self-appraisal form. You estimate that it would take you 1 hour to complete your appraisal form. Out of 8 hours of your work day, you have 7 hours remaining. You reckon that you need to execute a test case every 21 minutes (7 hours X 60 minutes / 20 test cases).

If the above situations look common to you, it means that you already do effort estimation even if you do not consciously recognize it as such.

Next, let us see the factors that you need to consider before you do test effort estimation:

a. Size of the system
It would take longer to test a larger system. In some projects, it is possible to know about the size of the system in terms of Function Points, Use Case Points or Lines of Code. You should take the size of the system into account when estimating the test effort.

b. Types of testing required
Sometimes, it is important to perform multiple types of testing on the system. For example, other than functional testing, it may be necessary to perform load testing, installation testing, help files testing and so on. You should create the effort estimates for each type of testing separately.

c. Scripted or exploratory testing
It may be feasible to only execute test cases or do exploratory testing or do both. If you intend to do scripted testing and do not have test cases available, you should estimate the time it would take to create the test cases and maintain them. Scripted testing requires test data to be created. If the test data is not available, you should estimate the effort it would take to create and maintain test data.

d. "Non-testing" activities
Apart from creating and executing tests, there are other activities that a tester performs. Examples include creating test logs/ reports, logging defects and entering time in the project management tool.

e. Test cycles
By a test cycle, I mean a complete round of testing (build verification testing followed by attempted execution of all test cases followed by all defects logged in the defect tracking system). In practice, one test cycle is not sufficient. You should estimate the number of test cycles it would take to promote the system to the client or production.

Now, let us understand the various approaches that you can use for test effort estimation. You may choose any of these approaches for your estimation. However, in my opinion, a combination of multiple approaches works best (by best, I mean that the effort estimates are close to the real actual efforts). In any case, you should be aware about the following approaches:

1. Use historical data from other projects
This approach is useful when you have effort data available from earlier projects which are very similar to the current project. For example, this approach is useful in the case of long-running projects where the test effort data from previous releases is readily available.

2. Your organization's approach
Your organization may have their custom approach to estimate test effort in projects.

3. Delphi method
This is useful when you have a number of experts knowledgeable in the testing to be done. The experts estimate separately and then their estimates are consolidated.

4. Use your own expert judgment
This approach is useful to arrive at a rough test effort estimate quickly.

5. Software size based approach
If the size of the system is available and the formula to convert software size to test effort is available, this approach may be used.

6. Activities based approach
This approach is useful if you can list the activities required. This approach may be used Top-Down (listing the high level activities and breaking them down to lower level activities) or Bottom-Up (listing the individual activities and combining them to higher level activities). Using this approach in the Top-Down manner is better since you can control the level of detail in your effort estimate. Remember to consider activities for each type of testing, any test cases or test data need to be created, the "non-testing" activities and the multiple test cycles.

As I mentioned before, you may choose any approach to do your test effort estimation. However, using at least two approaches is better. This way, you can compare the test effort estimates and address any obvious problems. Whatever hybrid approach you choose, you should document the assumptions made by you in the estimate.

Once you have arrived at the test effort estimate for your project and have convinced the stakeholders that it is a reasonable estimate, it does not stop there. You should track the actual progress in your project constantly to see if it is in line with your test effort estimate. You may find that some of your assumptions were not correct. You should revise your assumptions and your approach in line with your observations.

Continue to use your refined test effort estimation approach across test cycles and releases. In time, you should have a good estimation approach available with you.

Security Testing

First, a few words about security testing. Security testing is related to the security of data and the functionality of the application. You should be aware of the following concepts while performing security testing:
 
1. Confidentiality - The application should only provide the data to the relevant party e.g. one customer's transactional data should not be visible to another customer; the irrelevant personal details of the customer should not be visible to the administrator and so on.
 
2. Integrity - The data stored and displayed by the application should be correct e.g. after a withdrawal, the customer's account should be debited by the correct amount.
 
3. Authentication - It should be possible to attribute the data transmitted in the application to either the application or the customer. In other words, no one other than the customer or the bank should be able to create or modify any data.
 
4. Authorization - The application or a user should only be able to perform the tasks which they are respectively authorized to perform e.g. a customer should not be able to withdraw more than the balance in their account without having an overdraft facility, the application should not be able to levy charges on a customer account without prior customer approval.
 
5. Availability - The data and functionality should be available to the users throughout the working period e.g. if the bank's operating times are from 8 a.m. to 8 p.m. on all working days, it should be possible for a customer to access their account and make the necessary transactions on their account.
 
6. Non-repudiation - At a later date, it should not be possible for a party to deny that a particular transaction or data change took place e.g. if a customer withdraws an amount from their account, this should trigger the relevant actions (posting to their transaction records, debiting their account and sending them a notification etc.).
 
In your question, you mentioned that you wish to avoid any data breach by hackers. You should understand that hackers are not the only people from whom the application functionality and data need to be protected. There are other people that you need to consider as well:
 
1. Disgruntled customers
 
2. Unhappy or malicious employees of the bank
 
3. Unprofessional service providers e.g. an unprofessional hosting company that may have access to the application and the data
 
4. Unprofessional auditors
 
Further, since financial data is so important, banking applications in certain countries have to be compliant to the relevant financial standards. Research the relevant standards that your application needs to follow.
 
Creating a secure application involves a lot of work in designing a secure application and designing a secure data store. Even after deployment, the application should be closely monitored to ensure that the data is being accessed by only the authorized people. If any security breach is reported, it should be analyzed carefully and the loopholes plugged.
 
Now, let us discuss the actual security testing. You should design security tests based on at least the following:
 
1. Stated security requirements
2. Security-related standards that the application should follow
Assuming that it is a web application,
3. Common vulnerabilities found in web applications
4. Different browser versions on different operating systems (here you should note that implementing security only on the client-side may not suffice)
 
 
In your initial tests, you may want to use automated testing tools e.g. web vulnerability scanners, password crackers, web proxy tools etc. Based on your learning, you may want to execute the more complex security tests by hand. Keep yourself updated about the latest hacks and test them on your application before every release.
 
As you might now appreciate, security testing is a vast area of knowledge and practice. In order to do justice to security testing, it is better to have a dedicated team for security testing.
 
How to design test cases without any requirements specification (or any additional documentation for that matter)?
It makes for a great discussion. You have been handed an application with no requirements specification. You are supposed to create test cases. Can you do it? Sure, you can. Just look at the following test ideas.

· Does the application launch?

· Does the application have a help/ demo file? You can find abundant information in the help/ demo file to help you design your test cases.
· Does the application accept user input?

· Does the state of the application change on accepting each user input?

· Does each control in the application work? Examples of controls include menu items, toolbar buttons, links, text boxes and buttons.

· Does each controls have a consistent look and feel (e.g. style, size, font and alignment)?

· Is each label or text in the application spelt correctly?

· Is it possible to copy/ paste data to/ from the application?

· Does the application show all the displayed data (with or without scrolling)?

· Is it possible to perform the tasks promised by the name of the name of the application?

· Does the application close?

· (If it is a Windows application) Does the application follow the common standards for Windows applications?

· (If it is Web application) Does the application follow the common requirements for Web applications?


I am sure that you can come up with more test ideas. And this is an extreme example. In the real world, even if you know nothing about the application for which you are going to design tests, you may have one or more of the following resources to help you beside the requirements specification:
1. A knowledge transfer (either in person or via a document) regarding the application
2. High level business requirements
3. Design documents
4. Business analyst or product manager
5. Project manager or developers
6. Prior versions of the application
7. Older requirements specifications
8. Past bug reports or customer complaints
9. Installation guide and release notes
10. Your domain/ industry knowledge
11. Laws/ statutory requirements that must be satisfied by the application

