[image: image1.png]S

Testing without Requirements SPECIFICATIONS

TABLE OF CONTENTS

3Test Cases: Introduction, Creating and Importance

3Test cases without requirements specifications

4Theoretical Approach

4Use Case Based Approach

5Business Rules testing

6Walkthrough meeting with the Technical Specifications document

6Diagrammatic Approach

7ER Diagram approach

9Activity Model Diagram /UML

11DFD Diagram-

12Risks, Issues and Contingency Planning

13Alternative Ways of Testing

13User/Acceptance Testing

13Random Testing

13Customer Stories

Error! Bookmark not defined.Conclusion

Error! Bookmark not defined.Author’s Profile

Error! Bookmark not defined.References

Test Cases: Introduction, Creating and Importance

Test cases have traditionally been used to test any system – software or otherwise. The test case may transform into a checklist, a comprehensive step by step guideline on information displayed by the system, or a simple black box scenario. In any case, a test case is a pure representation of what the system should and shouldn’t do.

A functional specification document on the other hand is documented the way the user would want the system to be or how he perceives the system to be. A typical functional system is dominated by user understandable language, screen shots and behavior. Business rules may also be documented as part of the document.

One can argue that it may be easier to test from a functional/requirements specification document than creating a separate test case document – since the basis of a test case document is the functional specification document.

However there are several known pitfalls with this approach. Some of them are -

1. Test scenario build up is difficult

2. Incomplete documentation of flows

3. Unit level approach rather than system level approach.

4. Business rules may not be apparent, though they are documented.

Typically a functional specification is the basis of developing test cases with user flows, business rules and special conditions thrown in.

Test cases without requirements specifications

On the fly development, pressurized deadlines, changing user requirements, legacy systems, large systems, varied requirements and many more are known influences for many a project manager to discard or not update the functional specification document. While a project manager/requirements manager may be aware of the system requirements, this can cause havoc for an independent test team.

More so, with ever expanding teams, temporary resources, a large system may not be documented well enough or sometimes not at all, for the tester to form complete scenarios from the functional specification (if present) document.

This can pose a great risk to the testing of the system. Requirements will never be clearly understood by the test team and the developers will adopt an ‘I am king’ attitude, citing incorrectly working functionality as the way the code or design is supposed to work. This can confuse end development and you may have a product on your hand that the business doesn’t relate to, the end users don’t understand and the testers can’t test.

Dealing with a system that needs to be tested without functional specifications requires good planning, smart understanding and good documentation - lack of which caused the problem in the first place.

Before I begin describing some ways in which you can tackle the problem – here are a few questions you could be asking yourself

1. What type of testing will be done on the system– unit / functional / performance / regression?

2. Is it a maintenance project or is it a new product?

3. From where have the developers achieved their understanding of the system?

4. Is there any kind of documentation other than functional specification?

5. Is there a business analyst or domain knowledge expert available?

6. Is an end user available?

7. Is there a priority on any part of the functionality of the system?

8. Are there known high-risk areas?

9. What is the level of expertise of the development team and the testing team?

10. Are there any domain experts within your test team?

11. Are there any known skill sets in your team?

12. Are you considering manual/automated testing?

All of the questions should help you identify the key areas for testing, the ignorable areas for testing, the strong and weak areas of your team. Once you ascertain the level of skills and expertise in your team, you have choices available to choose from. Depending on the comfort level in your team, you can choose one from the options given below.

Theoretical Approach

The theoretical approach will ensure that you have good comprehensive documents for the system at the end of the process.

Use Case Based Approach
Traditionally use cases have been used for requirement gathering. There has been a considerable shift to use them for testing, primarily because they model user role-play, movement, access rights and the interaction of one module to another – which is essentially what a test plan aims to do.

A use case defines the following –

1. Primary actor or actors

2. Goal

3. Scenarios used

4. Conditions under which a scenario occurs

5. Scenario result (goal delivery or failure)

6. Alternative scenarios or flows

The advantage of this approach is that you have two ready things in your hand

1. Documented system functionality

2. Evident module interaction

The development or creation of the use case will not be an easy task. Typical way to develop a use case is to pick up the system screen by screen or module wise and talk to the concerned developers or business analysts. Users can also be brought into the discussion at a later stage. Most users will give you valuable inputs to the type of data they input to the system. That in turn can give you an insight to the flows of the system.

Exemplary questions that you can ask users/developers are:

1. Inputs to a screen

2. User movements/warnings on a screen

3. Access rights to screen(s) or modules.

4. Access to screen(s) and exits from screen(s)

5. Database checks/updates.

6. Outputs from a screen

7. Alternative inputs or exits from the screen(s).

You can screen these questions or add some based on the testing you will be conducting for the system. For e.g. If you are carrying out GUI testing, you could do well if you add questions like length of the text box (this question could be answered well by a developer, rather than a user or a business analyst). If you are doing system testing, you could probably cut out the question on database check or updates. On the other hand, if you are doing system testing as part of a technology migration, you should enforce that database updates are verified.

Business Rules testing
Every system operates on business rules. If one were to document the business rules on which a system is based – it would be an exhaustive list to write down and track. Most business rules become implicit in the design and mind.

Business rules are typically implemented separately from presentation, application and data logic. To add to this, they are under constant change due to market requirements, user needs and software upgrades. Business Rules testing will help validate that your system is performing as expected, thus enforcing correct business practices on the user and the system code.

A typical way to gather business rules for your system is by talking to the business analyst and trying to understand what the analyst expects the system to do or how he/she expects the system to behave. A meeting with a developer will be helpful to understand how he/she thinks the system should behave. You may get conflicting ideas here, and it is important that these are sorted out before you have begun testing.

You could document your learning using a spreadsheet designed as below. I have given some examples to help you understand what the header means.

	Screen/Module Name
	Component
	Business Rule
	Affects Flow – if yes, detail how?

	XX1
	Text Box
	Min Char Length
	No

	XX1
	User Rights
	Admin
	Yes – new menu option

	XX1
	XX Path selected
	Available only if Option A is selected
	Yes – takes user to Screen YY

The important point is to document all the business rules and at the same time understand the co-relation it has with various functional scenarios of the system.

You can expand the table above to suit your needs in order to understand the various normal and alternative flows of the system. Again, mould the table and the data that you gather to suit the type of testing that you will do for your system. If you are doing unit testing, you will use more business rules like the first example (min char length), than like the third example (available only if Option A..)

Keep the following in mind:

1. Divide the system into modules as done by development.

2. For each module, take views based on the kind of testing you intend to do.

3. Direct your questions to the right people. E.g. If you are unit testing a product, a developer would be the right person to talk to. If you are system or user testing a product, a business analyst or end user would be able to answer your questions.

4. If you are short on time, document your business rules in order of decreasing priority.

5. Be specific with your questions. Run through the product or the system yourself, and make a list of questions, before you attempt to ask other team members.

6. Know the difference between a business rule and UI design. For e.g. a warning message to indicate that all information may be deleted is not a business rule, but a UI design.

7. Check if the business rules are incorporated in the system as code logic or are stored in the database and are made use of through a rules engine. This will help you organize your questions better.

Walkthrough meeting with the Technical Specifications document
In a typical walkthrough, the author presents a code module or design component to the participants, describing what it does, how it is structured and performs its tasks, the logic flow, and its inputs and outputs.

This can be modulated to suit the needs of developing test cases. You can call for a walkthrough meeting with the business analyst, the head developer or the solution architect and request for a presentation of the system. If a technical specification (TS) document exists, it will do you good to do the walkthrough with the TS. The TS document will focus on the technicalities of the system, while the walkthrough will help you understand the front end of the system.

Document your system in the following areas at the time of walkthrough with the TS -

1. Working/Functionality of each screen

2. Special conditions/functionalities of the screen

3. Backend updates

4. Inputs

5. Outputs

6. Expected scenarios and results

7. Importance of the screen and its scenarios.

8. User interaction and dependency

Again, drill down to the level that your testing requires of you.

 DO NOT do the following

1. Convert the walkthrough to a problem solving session.

2. Try to find faults in the design, UI, system flow or layout.

3. Try to find faults in the DB design or architecture

4. Leave doubts till later.

5. Ignore glaring or critical faults. Point them out, but don’t attempt to find a solution.

Diagrammatic Approach
Data models are tools used in analysis to describe the data requirements and assumptions in the system from a top-down perspective. Traditionally, data models set the stage for the design of databases later on in the SDLC.

However, such diagrams can help testers to ascertain the functionality quickly and effectively. Given below are some of the data models and how they can be cast to suit testing needs.

ER Diagram approach
An Entity-Relationship diagram shows entities and their relationships. The ER diagram relates to business data analysis and data base design.

There are three basic elements in ER models:

1. Entities are the "things" about which we seek information.

2. Attributes are the data we collect about the entities.

3. Relationships provide the structure needed to draw information from multiple entities.

Before you draft an ERD for a screen, ask yourself these questions:

1. What/Who are the entities?

2. Is there more than one entity? Is there any relationship between these entities?

3. Does the entity have relationships other than the existing entities on the screen?

4. What are the qualities of the entities?

5. Cardinality of the entities (many-to-one, one-to-many)

6. Are 2 screens connected via entities? Can this be indicated via the ER diagram?

7. Is there additional information that cannot be captured through the ER diagram?

An ER Diagram uses the following notation for its 3 basic elements:

[image: image1.png]Entity -

[image: image2.png]Update Repair Type
Repair Type: Insurance

ew Repair Type: [Select -
Change Reason: [Select - |

Engineer Notes

Relationship –

Attribute -

Example ER Diagram –

The screen given was named as “Update Repair Type“ as seen below. The screen requires the user to update the repair type while entering a valid reason and adding notes. User can choose to Cancel or Save the task. (I gathered this by fiddling with the screen.)
1. Define Entities -

The changing entities here are “New Repair Type”, “Change Reason” and “Engineer Notes”, with Save and Cancel button being the other entities.

2. Define Attributes for the Entities –

Each of those entities has attributes. Based on the screen data availability, I determined the following.

New Repair Type- Repair A, Repair B

Change Reason – Change Reason A, Change Reason B

Engineer Notes- Entry mandatory by user.

Cancel- Enabled

Save- Enabled and Disabled

Based on the input I gathered so far, I made the following ER Diagram

3. Define Relationships –
Define relationships between each entity. For e.g. in this example, only after I have selected the repair type, can I select the change reason. Engineer Notes can be entered any time. Save button only activates after I have entered all the fields. Cancel button is available for cancellation at any point of time.

My entity diagram could hence look like this -

Note here that, even though the Entity “Save” has 2 attributes, it has not been mentioned in the complete E-R diagram, because it becomes implicit when one studies the diagram.

If the ER diagram gets complex in terms of relationships or attributes, it is advisable to draw 2-3 ER diagrams for that screen. You can base any amount of information in the diagram.

For e.g., if there is a database update, you can indicate database as an entity and indicate the various tables as its attributes and indicate through the relationship when it is likely to get updated.

Activity Model Diagram /UML

The UML enables you to model many different facets of your business, from the actual business and its processes to IT functions such as database design, application architectures, hardware designs, and much more.

You can use the different types of UML diagrams to create various types of models to suit your needs. The model types and their usages are

	Model Type
	Model Usage

	Business
	Business process, workflow, organization

	Requirements
	Requirements capture and organization

	Architecture
	High level understanding of the system being built, interaction between different software systems, communicate system design to developers

	Application
	Architecture of the lower-level designs inside the system itself

	Database
	Design the structure of the database and how it will interact with the application(s).

The UML contains two different basic diagram types:

Structure diagrams and Behavior diagrams.

An overview of some of these is listed below.

Structure diagrams depict the static structure of the elements in your system. The various structure diagrams are as follows: -

Class diagrams are the most common diagrams used in UML modeling. They represent the static things that exist in your system, their structure, and their interrelationships. They are typically used to depict the logical and physical design of the system.

Component diagrams show the organization and dependencies among a set of components. They show a system as it is implemented and how the pieces inside the system work together.

Object diagrams show the relationships between a set of objects in the system. They show a snapshot of the system at a point in time.

Deployment diagrams show the physical system's runtime architecture. A deployment diagram can include a description of the hardware and the software that resides on that hardware.

Composite structure diagrams show the internal structure of model elements.

Package diagrams depict the dependencies between packages. (A package is a model element used to group together other model elements.)

Behavior diagrams depict the dynamic behavior of the elements in your system. The various behavior diagrams are as follows:

Activity diagrams show the flow of activities within a system. You often would use them to describe different business processes.

Use case diagrams address the business processes that the system will implement. The use cases describe ways the system will work and who will interact with it. [BOOCH1]

State chart diagrams show the state of an object and how that object transitions between states. A state chart diagram can contain states, transitions, events, and activities. A state chart diagram provides a dynamic view and is quite important when modeling event-driven behavior. For example, you could use a state chart diagram to describe a switch in a telephone routing system. That switch will change states based on different events, and you can model those events in a state chart diagram to understand how the switch behaves.

Collaboration diagrams are a type of interaction diagram, as are sequence diagrams. The collaboration diagram emphasizes how objects collaborate and interact.

Sequence diagrams are another type of interaction diagram. Sequence diagrams emphasize the time ordering of messages between different elements of a system.

Timing diagrams are another type of interaction diagram. They depict detailed timing information and changes to state or condition information of the interacting elements.

Interaction overview diagrams are high-level diagrams used to show an overview of flow of control between interaction sequences.

As you can see, UML can support almost any kind of need that you might have of depicting a system. You need to decide which one you and your team would find easier to understand and draw test cases from.

For my Update Repair type example, I chose the activity diagram type

As you can see the diagram is immediately readable to the tester and clearly shows two flows in the system. Again, depending on the type of testing you are planning to do, add or delete detail from the diagram.

More importantly, determine if your system demands a structural or behavioral UML to detail it correctly.

DFD Diagram-
Data flow diagrams can be used to provide a clear representation of any business function. They depict the movement and process steps of data and information. The DFD diagram is an ideal representation of a black box kind of scenario. A DFD diagram can be used for analysis of the system at a high level and can then be used to describe the system to the lowest level of detail or as required. Hence, you can have a clear top-down expansion of the system functionality.

A DFD uses the following to depict a business process diagram –

1. External Entity

An external entity is a source or destination of a data flow, which is outside the area of study. Entities, which receive or originate data, are represented in the DFD. Symbol is an oval, which contains a meaningful, unique identifier.

2. Process

A process represents a transformation or manipulation of data flows within a system.

The symbol used is a rectangular box, which contains 3 descriptive elements:

Firstly an identification number appears in the upper left hand corner. This is allocated arbitrarily at the top level and serves as a unique reference.
Secondly, a location appears to the right of the identifier and describes where in the system the process takes place.

Finally, a descriptive title is placed in the centre of the box. This should be a simple imperative sentence with a specific verb, for example 'maintain customer records' or 'find driver'.

3. Data Flow

A data flow shows the flow of information from its source to its destination. A line represents a data flow, with arrowheads showing the direction of flow. Information always flows to or from a process and may be written, verbal or electronic. Each data flow may be referenced by the processes or data stores at its head and tail, or by a description of its contents.

Select Repair Type

4. Data Store

A data store is a holding place for information within the system. It is represented by an open ended narrow rectangle. Data stores may be long-term files such as sales ledgers, or may be short-term accumulations: for example batches of documents that are waiting to be processed. Each data store should be given a reference followed by an arbitrary number.

 S1
 Repair Job Table

5. Resource Flow

A resource flow shows the flow of any physical material from its source to its destination. For this reason they are sometimes referred to as physical flows.

The physical material in question should be given a meaningful name. Resource flows are usually restricted to early, high-level diagrams and are used when a description of the physical flow of materials is considered to be important to help the analysis.

 My example would look something like this when I create a DFD for it.

Risks, Issues and Contingency Planning

Some common risks/issues that you might face are: -

1. Half baked development – expected, since your requirements aren’t sufficient

2. Inexperienced resources.

3. Unavailable functional knowledge in your team.

4. Ability to comprehend diagrammatic representation in various ways.

5. Inadequate time to document functionality properly.

6. Unavailability of business analysts, developers, and team architects.

7. Constantly changing requirements.

8. Level of detail required may be too high and time to produce the detail maybe be less.

9. Conflicting diagrams/views arising from ambiguous discussions with business analysts and developers (yes, this is possible!)

And some ways to tackle the risks are: -

1. Know your team strength.

2. Know the technical “modules” as developed by the developers.

3. Collate the modules or decompose them further, depending on the type of testing you plan to do. For e.g. a system test will require you to combine modules while a unit test might require you to break down a module to extensive detail.

4. Assign modules as per person strength and knowledge.

5. Maintain a clean communication line between the team, developers and the business analysts.

6. If the above is done, changing your documentation to match the ever-changing requirements should be possible, although- beware, it could create havoc with your estimates.

7. When conflicts arise, make sure to discuss it out with the parties involved. In case that is not possible, refer to prototypes- if any. If there are no prototypes, validate it from an end user and the desired business approach/need.

8. To avoid ambiguous interpretation of diagrams or documents, make sure to determine standards for your teams to follow. In case of diagrams, choose those approaches, which are clean and analysis free. When a diagram is open for analysis, it is open for interpretation, which may lead to errors. Maintaining error free documentation and tracking of the same can be painful for a large project.

9. If level of detail required is high with limited time on your hands, document the basics – i.e. a very high-level approach and update the test cases as you go ahead with testing.

10. Unfortunately there is little you can do in terms of inexperienced resources or inadequate functional knowledge expertise within your team. Be prepared to hire outside help or build up the knowledge by assigning a team member to the task.

Alternative Ways of Testing
If there is absolutely no time for you to document your system, do consider these other approaches of testing

User/Acceptance Testing
User Testing is used to identify issues with user acceptability of the system. The most trivial to the most complicated defects can be reported here. It is also possibly the best way to determine how well people interact with the system. Resources used are minimal and potentially requires no prior functional or system knowledge. In fact the more unknown a user is to the system, the more preferred he is for user testing. A regressive form of user testing can help uncover some defects in the high-risk areas.

Random Testing
Random Testing has no rules. The tester is free to do what he pleases and as he seems fit. The system will benefit however, if the tester is functionally aware of the domain and has a basic understanding of business requirements. It will prevent reporting of unnecessary defects. A variation of random testing – called as Monte Carlo simulation, which is described as generation of values for uncertain variables over and over to simulate a model can also be used. This can be used for systems, which have large variation in input data of the numbers or data kind.

Customer Stories
User/Customer stories can be defined as simple, clear, brief descriptions of functionality that will be valuable to real users. Small stories are written about the desired function. The team writing the stories will include customer, project manager, developer and the tester. Concise stories are hand written on small cards such that the stories are small and testable. Once a start is made available to the tester, available functional and system knowledge can help speed up the process of testing and further test case development.

Repair Type

Mandatory Field: Entry by user

Repair B

Engineer Notes

Repair A

Reason B

Reason A

Enable

Save

Change Reason

Cancel

Disable

Enable

Reason A

Repair A

Repair B

Reason B

After Repair Type

After Engineer Notes

Enable

Save

Enable

Click to exit

Cancel

Mandatory Field: Entry by user

Engineer Notes

After Change Reason

Change Reason

Repair Type

Update

 New Repair Type

Add

 Change Reason

Enter

 Engineer Notes

Exit

Save

DB Updated	

User

1 Save

Save details entered

Repair Types in DB

After selection of repair type

1 Repair Type

Select a repair type

User

2 Change Reason

Select a change reason

Can choose to exit

After selection of change reason

Can choose to exit

3 Engineer Notes

Enter engineer notes

Can choose

 to exit

4a) Exit

Exit from Update Repair Type screen.

4b) Save

Save details entered.

 S1 Repair Job Table

PAGE
14

